Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dai-Xi Li, ${ }^{\text {a }}$ Duan-Jun Xu, ${ }^{\text {a }}{ }^{*}$ Jian-Ming Gu ${ }^{\mathbf{b}}$ and Yuan-Zhi Xu ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, People's Republic of China, and ${ }^{\mathbf{b}}$ Central Laboratory, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
H -atom completeness 82%
Disorder in solvent or counterion
R factor $=0.042$
$w R$ factor $=0.130$
Data-to-parameter ratio $=16.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(8-quinolinolato- $\boldsymbol{\kappa}^{2} N, O$)cobalt(III) methanol solvate

The title cobalt(III) complex, $\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$, features three 8-quinolinolate ligands that chelate the cobalt(III) atom with an octahedral coordination geometry. The methanol solvent molecule is disordered in the structure. The O $\cdots \mathrm{O}$ distances 2.726 (7) and 2.871 (8) A between the quinolinol hydroxyl and disordered methanol suggest the existence of hydrogen bonding. The separation distances of 3.404 (15) and 3.386 (7) A between parallel quinoline rings indicate $\pi-\pi$ stacking between neighboring complex molecules.

Comment

As part of an investigation into $\pi-\pi$ stacking interactions in metal complexes, several 8 -quinolinolate metal complexes have been prepared in our laboratory (Li et al., 2003). Compound (I) is a representative of this group.

(I)

The structure of (I) is shown in Fig. 1. Three 8-quinolinolate monoanions chelate to the $\mathrm{Co}^{\mathrm{III}}$ atom with an octahedral coordination geometry. The planar 8 -quinolinolate monoanions are nearly perpendicular to each other, with dihedral angles of $93.80(7), 95.34$ (6) and 91.49 (7) ${ }^{\circ}$. The overlapped arrangement of neighboring parallel quinoline rings is shown in Fig. 2. The quinoline plane containing atom N11 is separated from the quinoline plane containing $\mathrm{N} 11(1-x, 1-y$, $1-z$) by $3.404(15) \AA$. Likewise, the quinoline plane containing atom N31 is separated from the quinoline plane containing $\mathrm{N} 31(1-x, 1-y,-z)$ by 3.386 (7) \AA. These findings indicate the existence of $\pi-\pi$ stacking between the neighboring complex molecules.

The methanol solvent molecule is disordered, both C and O atoms being located in two sites with 0.5 occupancy factors. Although H atoms of the disordered methanol were not located, the O1a‥O11 distance of $2.726(7) \AA$ and the $\mathrm{O} 1 b \cdots \mathrm{O} 11$ distance of 2.871 (8) \AA suggest the existence of hydrogen bonding between the quinolinol hydroxyl group and the disordered methanol molecule. The C24$\mathrm{H} 24 \cdots \mathrm{O} 1 b\left(\frac{1}{2}-x, \quad y-\frac{1}{2}, \quad \frac{1}{2}-z\right)$ angle of 133° and the

Received 12 June 2003

 Accepted 25 June 2003 Online 30 June 2003

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds. Both disorder components of methanol are shown.

Figure 2
A packing diagram, showing the $\pi-\pi$ interaction between neighboring quinoline rings.

C24. . O1b distance of 3.154 (8) A suggest that the disordered methanol molecule is also involved in weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Compound (I) is isomorphous with the manganese(III) compound (Hems \& Mackay, 1975). The major difference between the Co and Mn complexes is the length of the coordination bonds: $\mathrm{Mn}-\mathrm{O}$ distances range from 1.905 to
$1.924 \AA$ and $\mathrm{Co}-\mathrm{O}$ distances range from 1.8975 (19) to 1.9066 (19) $\AA ; \mathrm{Mn}-\mathrm{N}$ distances range from 2.059 to $2.266 \AA$, while $\mathrm{Co}-\mathrm{N}$ distances range from 1.921 (2) to 1.936 (2) \AA. The other difference between the two structures is that the solvent methanol molecule in the Mn structure was not treated with a disorder model, even though the $\mathrm{C}-\mathrm{O}$ distance of $1.352 \AA$ is shorter than the expected value.

Experimental

The complex was prepared by refluxing a methanol solution (15 ml) containing $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}, 1 \mathrm{mmol})$ and 8 -quinolinol (0.15 g , 1 mmol) for 2 h . The resulting solution was filtered at room temperature. Brown single crystals were obtained from the filtrate after two weeks.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3}\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=523.42$
Monoclinic, $P 2_{1} / n$
$a=10.9235$ (12) A
$b=13.1172$ (14) Å
$c=16.6861(14) \AA$
$\beta=97.325$ (8$)^{\circ}$
$V=2371.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.466 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9762 reflections
$\theta=3.0-27.0^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, brown
$0.36 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS-RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.750, T_{\text {max }}=0.918$
10460 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.130$
$S=1.04$
5432 reflections
323 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters (\AA).

Co-O31	$1.8975(19)$	Co-N11	$1.921(2)$
Co-O21	$1.8994(18)$	Co-N21	$1.924(2)$
Co-O11	$1.9066(19)$	Co-N31	$1.936(2)$

The disordered methanol molecule was refined isotropically and its H atoms were not located. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (Nos. 29973036 and 20240430654).

metal-organic papers

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hems, R. \& Mackay, M. F. (1975). J. Cryst. Mol. Struct. 5, 227-245 Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, D.-X., Xu, D.-J. \& Xu, Y.-Z. (2003). Acta Cryst. E59, m271-m272.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

